Mark scheme - Electromagnetic Waves

Questio \mathbf{n}		Answer/Indicative content	Marks	
1		Both travel at the same speed / speed of light/ $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	B1	Ignore travels at 'c'

(

4.4 Waves - Electromagnetic Waves

4.4 Waves - Electromagnetic Waves

2	A	1	Examiner's Comments This question was about the critical angle and refractive index equation $\sin C=1 / n$ which appears in the Data, Formulae and Relationship Booklet. The majority of the candidates realised that the largest value of the refractive index would give the smallest critical angle. The answer had to be A. It was good to see the equation above scribbled on many of the scripts.
	Total	1	
	distance $=6.0 / \cos 33.7$ or $7.2(\mathrm{~cm})$ OR $\begin{aligned} & v=3.00 \times 10^{8} / 1.50 \text { or } 2.00 \times 10^{8} \\ & \left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & t=7.2 \times 10^{-2} / 2.00 \times 10^{8} \\ & t=3.6 \times 10^{-10}(\mathrm{~s}) \end{aligned}$	C1 A1	Allow 34° Allow 2×10^{8}
	Total	2	
	Microwaves from \mathbf{T} are transverse/polarised wtte At 0° or 180° the grille blocks (all) the (polarised) waves and at 90° the grille allows all the microwaves to pass.	B1	Allow E field perpendicular to direction of motion Allow explanation in terms of $I=I_{0} \cos ^{2} \theta$ Examiner's Comments Candidates found this question difficult. Candidates often did not state that the microwaves were polarised or mistakenly thought that the grille caused the microwaves to become polarised. Candidates also did not appear to read the question carefully often thinking that the detected signal varied from a maximum initially. Some candidates quoted $I=I_{0} \cos ^{2} \theta$ to help explain their answer.
	Total	2	
2 3	Straight line to centre of block and reflects along original ray P Straight line to centre of block and refracts with angle q less than 49.9° but greater than 30°	B1 B1	
	Total	2	
2 4	No sideways momentum before hits ground	B1	AW

		Movement in opposite sideways directions needed to conserve momentum	B1	
		Total	2	
2 5		Use a polaroid / polarising filter Rotation will change intensity	B1B1	Allow brightness / light Examiner's Comments Most candidates scored well deserved 2 marks here for opting to use a polarising filter and rotating it to see variation in the intensity of the transmitted light. A small number of candidates chose the wrong equipment - the most common of these were diffraction grating, a single slit and microwave receiver.
		Total	2	
26		$\begin{aligned} & \mathrm{c}=\mathrm{f} \text { or } f=3.0 \times 10^{8} / 0.60 \\ & f=5.0 \times 10^{8}(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow $v=f \lambda$ Allow 5×10^{8}
		Total	2	
27	i	$\begin{aligned} & (f=v / \lambda)=3.00 \times 10^{8} \div 4.69 \times 10^{-7}(= \\ & \left.6.40 \times 10^{14} \mathrm{~Hz}\right) \end{aligned}$	B1	$6.397 \times 10^{14} \mathrm{~Hz}$
	ii	$\begin{aligned} & 1.96 \times 10^{8}\left(\mathrm{~ms}^{-1}\right) \\ & 3.07 \times 10^{-7}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $3.06 \times 10^{-7}(\mathrm{~m})$ (uses (i)) Not ECF for incorrect speed
		Total	3	
		Diagram showing angle within the block measured relative to the normal Increase the (incident) angle until the ray of light runs along the boundary / suffers total internal reflection (ORA) or angle measured using a protractor n determined using $n=1 / \sin C$	B1 B1 B1	Allow $i / \theta / C$ as the angle to be measured. Must be clear which angle is being measured. Expect the normal as a line perpendicular to straight edge of block, and emergent ray.No labels expected for the rays or the normal. Formula in this arrangement Examiner's Comments This question required a knowledge of how to practically determine the refractive index using the given apparatus. It was clear that candidates were not sure how to carry out this experiment correctly and responses often were confusing with a misconception of what the critical angle is. It was often not clear what angle was being measured as many different angles were usually drawn on the diagram. Many candidates showed the ray of light entering the straight face of the block which would make it impossible to determine the critical angle.
		Total	3	

		$\begin{aligned} & \text { (k.e. }=) E=5.0 \times 10^{6} \times 1.6 \times 10^{-19} \\ & v=\sqrt{ }(2 E / m) \text { or }=\sqrt{ }\left(2 \times 8.0 \times 10^{-13} /\right. \\ & \left.6.6 \times 10^{-27}\right)=1.6 \times 10^{7}\left(\mathrm{~ms}^{-1}\right) \\ & p(=m v)=6.6 \times 10^{-27} \times 1.6 \times 10^{7} \\ & \text { giving } p=1.1 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	$E=8(.0) \times 10^{-13} \mathrm{~J}$ $\text { or }\left(E=p^{2} / 2 m \text { so }\right) p=\sqrt{ }(2 m E)$ Note: A value of $v=1.6 \times 10^{7}\left(\mathrm{~ms}^{-1}\right)$ automatically scores both C1 marks even if the calculation for E is not shown $\begin{aligned} & \text { or } p\left(=\sqrt{ }(2 m E)=\sqrt{ }\left(2 \times 6.6 \times 10^{-27} \times 8.0 \times 10^{-13}\right)\right. \\ & \text { giving } p=1.0 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ Full substitution of values must be shown and answer (if calculated) must be correct Examiner's Comments This question provided an excellent opportunity for candidates to produce immaculate responses: identify the physics involved, select and write down the correct formula, do the necessary conversion (MeV to J), rearrange the formula, substitute correctly and then write the final response in standard form to a correct number of significant figures. Some of the common errors were: - forgetting to convert 5.0 MeV into J - not showing a full substitution of values (which is necessary for a 'show that' question) - not calculating the response to more than 1 s.f. (which is necessary for a 'show that' question).
		Total	3	
	a	Speed of light is less in water (ORA) Frequency is the same (in both) Wavelength is smaller in water (ORA)	B1 B1 B1 B1	Allow calculated values for air and water Allow speed decreases (from air to water) Not v or c Allow f is the same Allow wavelength / λ decreases (from air to water) Examiner's Comments Most candidates gained two or more marks. Many candidates were aware that the speed of light was less in water than in air. A significant number of candidates also knew that the frequency of light remains constant and successfully argued the fate of the wavelength using the wave equation $v=f \lambda$. Exemplar 12 -... In ain the light nill trane at neanb.................. \qquad spered of high. It will decrene...in speres when ... It goes ints wuter, The frequeng will stay ...constemt throgh both medimis. The ravelagh wilc decrense a' it traneb........ihlo the water......... [3] This exemplar illustrates a flawless answer from a top-end candidate. It had all the main ingredients for scoring 3 marks. The

				answers matched well with the marking points - the examiner had no issues with following the text.
	b	Laser / ray box or protractor mentioned Ray diagram showing (incident) ray within the block, (refracted) ray along the straight edge of block and critical angle marked between the incident ray and the normal (Refractive index determined using) $n=1 / \sin C$	B1 B1	Not 'ray of light' for laser / ray box Allow C, critical angle, θ or i for the angle marked between the incident ray and normal Note: No labelling of rays or normal is required Ignore direction of rays Ignore any internally reflected ray Note this mark is for the ray diagram. Ignore description, unless there are multiple refracted rays shown Allow any subject and terms do not need to be defined Not bald ' ${ }_{n} 1 \sin \theta_{1}=n_{2} \sin \theta_{2}$ ' Examiner's Comments The range of marks was poor in this practical question on refraction and critical angle. Most candidates did score a mark for selecting the correct expression for critical angle and refractive index from the Data, Formulae and Relationships booklet. The ray diagram lacked clarity and often showed incorrect critical angle in the air, rather than within the block. There were many missed opportunities here. No credit could be given for generic PAG-type description involving a rectangular block and plotting sini against sinr graph.
		Total	6	
		Clear indication that angles of incidence and refraction are being measured relative to the normals refractive index $=$ sini $/$ sin r Any one from: - Measure angle(s) using a protractor - Plot sini against sinr graph or average $\sin i / \sin r$ values - Use narrow beam of light (for ray box) / draw thin pencil lines - Conduct experiment in a dark room	B1	Note this can be scored from a clear diagram. The angles must have sensible labels, e.g. i, $r, \theta 1, \boldsymbol{\theta}$, etc Ignore angle of refraction > angle of incidence Allow n for refractive index Allow $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$, as long as all labels have been correctly identified and the refractive index for air/vacuum is taken as 1 Not $n=c / v$ Examiner's Comments This question produced a wide spectrum of marks, with only the upper quartile of the candidates generally securing 2 or 3 marks. Candidates are reminded that if a diagram is drawn to support an answer, it must be adequately annotated. On many scripts, the normal was missed out and the angles of incidence and refraction were marked incorrectly (often between the light beam and the straight edge of the rectangular block). A significant number of candidates decided to change the block to a semi-circular one, and focused erroneously on determining the refractive index n using the critical angle equation $\sin C=1 / n$.
		Total	3	

3 2			The ray is refracted away from the normal, therefore the refractive index of water is less than the refractive index of glass or speed of light in water is greater than the speed of light in glass. The frequency remains constant. $v=f \lambda$ and therefore the wavelength of light increases as it travels from glass to water.	B1 B1 B1	
			Total	3	
			$\begin{aligned} & 1.00 \times \sin 56.3=1.50 \times \sin r(\text { Any } \\ & \text { subject }) \\ & r=33.7^{\circ} \end{aligned}$ Correct working / reasoning leading to 90.0° (e.g. $\theta=180-(56.3+$ 33.7), therefore $\theta=90.0^{\circ}$)	$\begin{gathered} \text { M1A1 } \\ \Delta 1 \end{gathered}$	Allow with or without the 1.00 Allow 34° Examiner's Comments Generally, candidates answered this question well with most making a good start with the equation $n \sin \theta=$ constant. Most candidates correctly calculated the angle of refraction to be 33.7°; only a small proportion lost marks because of rounding errors. The final mark was reserved for steps clearly showing that the angle θ marked on the figure was equal to 90.0°. A pleasing number of candidates annotated the figure with angles and labels in order to ensure this last mark was picked up. A very small number of candidates attempted to either use $\sin C=$ $1 / n$ or omitted $n \sin \theta=$ constant altogether.
			Total	3	
3 4	a	i	$\begin{aligned} & 1.36 \\ & 1.97 \times 10^{8} \end{aligned}$	B1 B1	Not 1.3 or 1.4 Not 1.9 or 2.0 Examiner's Comments This question was generally well answered. Some lower ability candidates were careless in the calculation of the speed of light in glass and gave their answers as either 1.9 or 2.0 as opposed to 1.97. There were also some candidates who gave an answer of 4.56 $\times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ - this is where candidates should check the pattern in the table.
		ii	$\left(\frac{5.2 \times 10^{-7}}{1.52}=\right) \quad 3.4(2) \times 10^{-7}(\mathrm{~m})$	B1	Allow $3.41 \times 10^{-7}(\mathrm{~m})$ Not ECF from (a)(i)

4.4 Waves - Electromagnetic Waves

					Examiner's Comments Surprisingly, this question did not score highly - many candidates did not realise that the wavelength of light in the glass would be the wavelength of light in air divided by the refractive index of glass.
	b	i	$\begin{aligned} & \sin \theta=\frac{\sin 37}{1.52}(=0.39593) \\ & \theta=23(.3)^{\circ} \end{aligned}$	C1 A1	Examiner's Comments Many candidates correctly applied Snell's law. Common mistakes were either using the wrong refractive index or inverting the answer.
			Ray in glass bends towards normal and ray in ethanol bends away from normal but at a smaller angle than 37° Rays are straight by eye	B1	Note Ray should not be parallel to incoming ray. Not angle of refraction is zero in glass Examiner's Comments This question required candidates to apply the previous answers to this question to draw an appropriate ray diagram. Candidates do need to use a ruler. A common error was for the emergent ray in the ethanol to be parallel to the incident ray in the air. This question required candidates to think through their diagram stage by stage using information from the previous part and the table given earlier in the question. Exemplar 8 This candidate has used a ruler and drawn straight rays. The candidate has marked on the normal and indicated the angle of refraction in the glass. It is clear that the ray in the ethanol is not parallel to the original ray.
			Total	6	
$\begin{array}{\|l\|l} 3 \\ 5 \end{array}$		i	3 downward arrows correctly labelled.	B1	longest being $4.33 \times 10^{-7}(\mathrm{~m})$
		ii ${ }^{\text {ii }}$	$\begin{aligned} & \Delta \mathrm{E}=\mathrm{hc} / \lambda \\ & \lambda=6.63 \times 10^{-34} \times 3 \times 10^{8} / 4.8 \times \\ & 10^{-20}=4.1(4) \times 10^{-6}(\mathrm{~m}) \end{aligned}$ region: infra red	C1 A1 B1	allow ecf if wavelength calculation incorrect.

4.4 Waves - Electromagnetic Waves

		Total	4	
6	i	$\begin{array}{\|ll\|} \hline \text { Microwave: } & 2 \mathrm{~cm} \\ \text { X-ray } & 200 \mathrm{pm} \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	ii	Any two from: May be reflected / refracted / diffracted / interference May be polarised Travel in a vacuum (at a constant speed / $3 \times 108 \mathrm{~m} \mathrm{s-1}$) Oscillation of electric and magnetic fields.	B1 $\times 2$	Allow speed of light
		Total	4	
$\begin{aligned} & 3 \\ & 7 \end{aligned}$	i	It is longitudinal	B1	
	ii	Loudspeaker, microphone / ear and slit Sound spreads from the slit AW Size of slit comparable to the wavelength (of sound)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow doorway for a slit / gap - receiver for microphone Not diffraction (since it is in the stem of the question)
		Total	4	
38	i	$\begin{aligned} & \sin C=1 / n=1 / 1.69(=0.592) \\ & C=36^{\circ} \end{aligned}$	C1 A1	
	ii	Total internal reflection occurs because the angle of incidence (at the surface) is greater than the critical angle/ 36°	B1 B1	allow because $\underline{i}>\underline{C}$ Examiner's Comments Almost all of the candidates managed to calculate the critical angle correctly. The explanation in part (ii) was not so successful. The majority gained the mark for total internal reflection but most omitted the crucial words of incidence to qualify which angle must be greater than the critical angle. The example here (exemplar 10) shows the perfect succinct answer. Exemplar 10

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& the crystal has a higher refractive ino than air and the angle ofuncidences -.... greater than the critical angle, so theight undergoes total internal refleot \\
\hline \& \& Total \& 4 \& \\
\hline \& a \& \begin{tabular}{l}
Photon(s) mentioned \\
One-to-one interaction between photons and electrons \\
Energy of photon is independent of intensity / intensity is to do with rate (of photons / photoelectric emission) / photon energy depends on frequency / energy of photon depends on wavelength / photon energy \(\propto\) frequency / photon energy \(\propto 1 / \lambda\) \\
energy of uv photon(s) > work function (of zinc) / frequency of uv > threshold frequency
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
\\
\hline
\end{tabular} \& \begin{tabular}{l}
Allow 'photon absorbed by an electron' \\
Allow: collide etc. for interaction \\
Allow \(E=h f\) or \(E=h c / \lambda\) \\
Allow energy of light photon(s) < work function (of zinc) / frequency of light > threshold frequency \\
Allow \(\geq\) instead of \(>\) here \\
Not \(f>f_{0}\) \\
Examiner's Comment \\
Many candidates wrote enthusiastically about photoelectric effect and understood the significance of work function energy (or threshold frequency) and the one-to-one interaction between photon and an electron. Some candidates did not mention 'photons' and this limited the marks they could acquire. The role of intensity was less understood. Many candidates thought it was linked to 'the number of photons' or 'the amount of electrons emitted. The important term rate of the missing ingredient. Top-end candidates gave eloquent answers, typified by the response: 'intensity of visible light only affects the rate of photons incident on the plate but not the energy of each photon'. Two common misconceptions were: \\
- Photons were emitted from the negative plate. \\
- Confusing threshold frequency and work function energy.
\end{tabular} \\
\hline \& b \& \[
\begin{aligned}
\& \phi=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{2.9 \times 10^{-7}} \text { or } 6.86 \times 10 \\
\& E=5.1 \times 1.60 \times 10^{-} \text {or } 8.16 \times 10^{-19}(\mathrm{~J}) \\
\& \text { max kinetic energy }=(8.16-6.86) \times \\
\& 10^{-19} \\
\& \text { max kinetic energy }=1.3 \times 10^{-19}(\mathrm{~J})
\end{aligned}
\] \& C1
C1

A 1 \& | Note: Using 5.1 and not 8.16×10^{-19} cannot score this mark or the next mark |
| :--- |
| Allow 2 marks for 0.81 eV |
| Examiner's Comment |
| This was a notable success for most of the candidates. Examiners were pleased to see a range of techniques being used to get the correct answer of $1.3 \times 10^{-19} \mathrm{~J}$. Many answers showed excellent structure, effortless conversion of energy from electronvolt to joule and excellent use of the calculator when dealing with powers of ten. Most candidates scored three marks. A small number of candidates |

\hline
\end{tabular}

				left the final answer as 0.81 eV ; the only thing missing was the conversion to J.
	c	Any three from: The electrons are repelled by C/ electrons travel against the electric field (AW) The electrons are emitted with a 'range' of speed / velocity / kinetic energy (AW) As V increases the slow(er) electrons do not reach \mathbf{C} and hence I decreases maximum $K E$ in the range 2.1 eV to 2.2 eV or $3.36 \times 10^{-19} \mathrm{~J}$ to $3.52 \times 10^{-}$ ${ }^{19} \mathrm{~J}$	B1×3	Note 'range' can be implied by 'highest' or 'lowest' Allow 'find p.d. when current is (just) zero, and then $\mathrm{KE}=e \times V$ Examiner's Comment The electrons emitted from the metal plate have a range of kinetic energy. The emitted electrons are repelled by the negative electrode C. Fewer electrons reach \mathbf{C} as the p.d. is increased. When the p.d. is about 2.2 V , and the current zero, the most energetic electron are stopped from reaching \mathbf{C}. This makes the maximum kinetic energy of the electrons equal to $2.2 \mathrm{eV} \text { or } 3.4 \times 10^{-19} \mathrm{~J} .$ The question baffled most candidates. Some top-end candidates commented on 'the electrons repelled by \boldsymbol{C} ' and the maximum kinetic energy of the emitted electrons being 2.2 eV . Such answers were rare. Too many candidates made guesses with answers such as 'the current drops because resistance increases' and 'temperature increases and hence the current decreases'.
		Total	10	
	a	There is no contact force between the astronaut and the (floor of the) space station (so no method of measuring / experiencing weight)	B1	Allow astronaut and the space station have same acceleration (towards Earth) / floor is falling (beneath astronaut) Examiner's Comments Misconception Experiencing weightlessness is not the same as being in freefall There was a lack of understanding of the nature of feeling weightless. The sensation of 'weightlessness' is a lack of the physiological sensation of 'weight'. The skeletal and muscular systems are no longer in a state of stress. This sensation is caused by a lack of contact forces as a result of the ISS and the astronaut experiencing the same acceleration. Common incorrect responses included: - the astronaut is weightless because he is falling - there is no resultant force on the astronaut - gravity is too weak to have any effect on the astronaut - the ISS orbits in a vacuum where there is no gravity.
	b	$\begin{aligned} & M=5.97 \times 10^{24}(\mathrm{~kg}) \\ & \text { or ISS orbital radius } R=6.78 \times \\ & 10^{6}(\mathrm{~m}) \\ & \text { or } g \propto 1 / r^{2} \end{aligned}$	C1 C1	

4.4 Waves - Electromagnetic Waves

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \left(g^{2}=\text { constant so }\right) g \times\left(6.78 \times 10^{6}\right)^{2}= \\
\& 9.81 \times\left(6.37 \times 10^{6}\right)^{2} \\
\& g=8.66\left(\mathrm{~N} \mathrm{~kg}^{-1}\right)
\end{aligned}
\] \& A1 \& \begin{tabular}{l}
\[
\text { or } g\left(=G M / R^{2}\right)=6.67 \times 10^{-11} \times 5.97 \times 10^{24} /\left(6.78 \times 10^{6}\right)^{2}
\] \\
Allow rounding of final answer to 2 SF i.e. \(8.7\left(\mathrm{~N} \mathrm{~kg}^{-1}\right)\) \\
Examiner's Comments \\
The simplest method here was to use the fact that \(g\) is inversely proportional to \(r^{2}\), so \(g r^{2}=\) constant. If this was not used, a value for the mass of the Sun had to be calculated, which introduced a further step. Candidates who omitted this calculation and used a memorised value of the Sun's mass instead were unable to gain full marks, because they invariably knew it to 1 s.f. only, whereas 3 were required. \\
Errors occurred when candidates used the incorrect distance in the formula for \(g\). Common errors included: \\
- forgetting to square the radius \\
- using the Earth's radius rather than the orbital radius of the satellite \\
- calculating \(\left(6.37 \times 10^{6}+4.1 \times 10^{5}\right)\) incorrectly.
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& 2 \pi r / T=v \text { or } T=2 \times 3.14 \times 6.78 \times \\
\& 10^{6} / 7.7 \times 10^{3} \\
\& T=5.5 \times 10^{3} \mathrm{~s}(=92 \mathrm{~min})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& ECF incorrect value of \(R\) from \(\mathbf{b}\) (i) \\
\hline c \& \[
\begin{aligned}
\& 1 / 2 M c^{2} \\
\& \left(1 / 2 N \mathrm{~A} m c^{2}\right)=\quad=\frac{3}{2} R T \\
\& c^{2}=3 \times 8.31 \times 293 / 2.9 \times 10^{-2}= \\
\& 2.52 \times 10^{5} \\
\& \sqrt{ } c^{2}=500\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
\& \left(=7.7 \times 10^{3} / 15\right)
\end{aligned}
\] \& C1
C1
A1

A0 \& | $\begin{aligned} & \text { or } 1 / 2 m c^{2}=\frac{3}{2} k T \text { or } c^{2}=3 k T / m \\ & \text { or } c^{2}=3 \times 1.38 \times 10^{-23} \times 6.02 \times 10^{23} \times 293 / 2.9 \times 10^{-2}=2.52 \times 10^{5} \\ & \text { not }\left(7.7 \times 10^{3} / 15\right)=510\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ |
| :--- |
| Examiner's Comments |
| The success in this question depended on understanding the meaning of the term m in the formula $\frac{1}{2} m c^{2}=\frac{3}{2} k T$ given in the Data, Formulae and Relationship booklet. A significant number of candidates took m to be the mass of one mole (the molar mass, M) whereas m is actually the mass of one molecule. Candidates who used the formula $\frac{1}{2} M c^{2}=\frac{3}{2} R T$ were usually more successful because the molar mass had been given in the question stem. |

\hline d \& | power reaching cells $(=I A)=1.4 \times$ |
| :--- |
| $10^{3} \times 2500=3.5 \times 10^{6} \mathrm{~W}$ |
| power absorbed $=0.07 \times 3.5 \times 10^{6}=$ $2.45 \times 10^{5} \mathrm{~W}$ |
| cells in Sun for ($92-35=$) 57 |
| minutes |
| average power $=57 / 92 \times 2.45 \times 10^{5}$ $=1.5 \times 10^{5}(\mathrm{~W})$ | \& C1

C1
C1
A1

A \& | mark given for multiplication by 0.07 at any stage of calculation |
| :--- |
| (90-35 =) 55 minutes using $T=90$ minutes |
| ECF value of T from \mathbf{b} (ii) |
| $55 / 90 \times 2.45 \times 10^{5}=1.5 \times 10^{5}(\mathrm{~W})$ using $T=90$ minutes |
| Examiner's Comments |
| Although this question looked daunting, it was actually quite linear and many candidates who attempted it were able to gain two or |

\hline
\end{tabular}

		in terms of $x \propto \lambda$ or $x=\lambda D / a, D$ and a are constants		This was generally well answered with most candidates giving correct explanation of why the fringe pattern was more spread out. Many candidates wrote concise answers such as the fringe separation increases because red light has longer wavelength and fringe separation x wavelength'. The two most common errors were: - Red light has shorter wavelength than blue light. - The pattern had something to do with the refraction of light through the double-slit.
		Total	6	
		Level 3 (5-6 marks) Response shows clear distinction between investigations; clear and correct reasoning is given for the situations which give maximum / minimum readings in both cases, including correct numerical values There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Response refers to both investigations; some reasoning is given for the situations which give maximum / minimum readings in both investigations, including some numerical values There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited reasons are given for the situations which give maximum / minimum readings in either investigation There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1 $\times 6$	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for $\mathbf{3}$ marks, etc. Indicative scientific points may include: explanation 1 - receiver aerial vertical - electrons are driven (maximum distance) up and down along the length of the aerial because the oscillations (of the electric field) are vertical, causing maximum (a.c.) current - receiver aerial horizontal - electrons are driven (minimum distance) across the aerial because the oscillations (of the electric field) are only in the vertical plane (no oscillation along the aerial to cause current), so zero / minimum current - rotation of receiver aerial by $\pm 90^{\circ}$ (or 90° and 270°) from vertical leads to zero current explanation 2 - reflected wave superposes with incident wave at receiver aerial - coherent waves as from same source - constructive interference / waves in phase gives max current - reflected wave has travelled $n \lambda$ further, $n=0,1$, etc - so max current when plate is at $\lambda / 2,2 \lambda / 2$, etc from receiver aerial, i.e. $30,60 \mathrm{~cm}$ - destructive interference / waves 180° ($\pi \mathrm{rad}$) out of phase gives zero current - reflected wave has travelled $(2 n+1) \lambda / 2$ further, $n=0,1$, etc - so zero current when plate is at $\lambda / 4,3 \lambda / 4$, etc from receiver aerial, i.e. $15,45 \mathrm{~cm}$ - reflected signal will be weaker the further it has to travel so no longer complete cancellation (ammeter reads close to zero) Note: Give full credit to candidates who take the 180° ($\pi \mathrm{rad}$) phase change on reflection into account, which gives max current at 15,45 cm etc and zero current at $30,60 \mathrm{~cm}$ etc.

			This was the second of the two LoR questions in this paper. It required knowledge of polarisation, superposition and interference. There is no one perfect model response but generally, for Level 3, candidates were required to give clear reasoning for the situations which gave both maximum and minimum readings in both investigations. Such candidates included correct numerical values in their responses (although 'half a wavelength' was acceptable in place of 30 cm). Level 2 responses were sometimes incomplete (e.g. giving the maximum position but not the minimum position) or confused (e.g. the maximum and minimum positions were given but were the wrong way around). Level 1 responses came from candidates who misunderstood the physics of one of the situations, or who confused phase difference and path difference, or whose descriptions were generally too vague to gain much credit. It may be helpful to point out that investigation $\mathbf{2}$ was not about the formation of a stationary wave; rather, it was about two overlapping coherent waves forming regions of constructive and destructive interference. A common misconception was that the maximum and minima signals were related to antinodes and nodes. Misconception A minimum or zero reading does not occur when two waves are merely out of phase. They must be completely out of phase. The best way to describe this is to say that they are in antiphase.
	Total	6	
4	Level 3 (5-6 marks) Clearly labelled diagram. Procedure is correct including appropriate measurements Analysis is correct and includes A5. (6 marks) Any point omitted or incorrect (5 marks). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Good diagram. Most measurements made Some analysis. (4 marks) Any point omitted or incorrect (3 marks). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	B1 $\times 6$	Diagram 1. Labelled diagram of glass block \& ray box 2. Incident and refracted rays shown 3. Normal shown and correct i and r Procedure 1. Block placed on paper 2. Incident and refracted rays marked 3. Angles measured using a protractor Analysis 1. $\sin i$ and $\sin r$ calculated 2. $\sin i$ against $\sin r$ graph plotted 3. Straight line of best fit drawn 4. gradient = refractive index (n) 5. Error bars drawn to find the gradient

				- In (c)(i) calculating the difference in the time for the two rays by halving the period of $2.0 \times 10^{-15} \mathrm{~s}$. - In (c)(ii) using the wavelength in vacuum of $6.0 \times 10^{-7} \mathrm{~m}$ but the incorrect speed of $2.5 \times 10^{8} \mathrm{~ms}^{-1}$ to calculate the period. This gave an answer of $2.4 \times 10^{-15} \mathrm{~s}$; examiners allowed 1 mark for this method. - In (c)(iii), a small number of candidates, mainly at the lowend, confused the symbol φ for phase difference to be work function. This produced some bizarre answers.
	ii	$\begin{aligned} & \begin{array}{ll} (f=) \frac{3.0 \times 10^{8}}{6.0 \times 10^{-7}} & \begin{array}{l} \text { or } 5.0 \\ \times 10^{14} \\ (\mathrm{~Hz}) \end{array} \\ & (T=) \frac{6.0 \times 10^{-7}}{3.0 \times 10^{8}} \\ \text { or } \end{array} \\ & T=2.0 \times 10^{-15}(\mathrm{~s}) \end{aligned}$	C1 A1	$\begin{aligned} & \text { Allow } 1 \mathrm{SF} \text { of } 2 \times 10^{-15} \\ & \text { Allow } 1 \text { mark for } 2.4 \times 10^{-15}(\mathrm{~s}) ; 2.5 \times 10^{8} \mathrm{~ms}^{-1} \text { used } \end{aligned}$
	$\begin{aligned} & \text { ii } \\ & i \end{aligned}$	$\varphi=180^{\circ}$	B1	Possible ECF from (i) and (ii) Note answer must be $\varphi=(\mathrm{cc})(\mathrm{i}) \times 360^{\circ} /(\mathrm{c})$ (ii) Not an answer in rad, e.g. π rad
		Total	6	
4	i	(refraction index) $=$ speed of light in vacuum + speed of light in material	B1	Note light must be mentioned at least once Allow $\mathrm{n}=\mathrm{c} / \mathrm{v}$ if all terms defined Allow ration of speed of light in vacuum to speed of light in material NOT speed of light in air for c
	ii	Frequency (of light) is the same (in A and B) 1 (Light travels) slower in \mathbf{B} or $v_{B}=$ $0.77 v_{A}$ ORA $v=f \lambda$ and $\lambda_{\mathrm{B}}<\lambda_{\mathrm{A}}$ $\sin 60^{\circ}=1.3 \times \sin \theta$ 2 $\theta=42\left({ }^{\circ}\right)$ (No total internal reflection) 3 Internal reflection / critical angle can only occur for light travelling from \boldsymbol{B} to $\boldsymbol{A} A W$	B1 B1 B1 C1 A1 B1	Allow f for frequency Allow v directly proportional to k Allow TIR can only occur for light entering an optically less dense material $/$ lower refractive index ORA Not $\theta<\phi$
		Total	7	
4 7	i	$\begin{aligned} & \text { 1. } p=30^{\circ} \\ & \text { 2. } \sin q=0.5 \times 1.53 \text { or } 0.765 \\ & q=50^{\circ} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 49.9 Note 19° does not score
	ii	p always equals i or p increases with i/ when $i=60^{\circ}, p=60^{\circ}$ Any three from:	B1 B1 $\times 3$	

4.4 Waves - Electromagnetic Waves

